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Madow. ~/ The conditions are usually satisfied with regard to estimates

from sample surveys. As a rule of thumb the variance formula is usually

accepted 'as satisfactory if the coefficient of variation of the variable
o

win the denominator is less than 0.1; that is, if -- < 0.1. In other words,
w

this condition states that the coefficient of variation of the estimate in

the denominator should be less than 10 percent. A larger coefficient of

variation might be tolerable before becoming concerned about Equation (3.26)

as an approximation.
o

The condition ~ < 0.1 is more strin~ent than necessary for reg~rding
w

the bias of a ratio as negligible. With few exceptions in practice the

bias of a ratio is ignored. Some of the logic for this ,,,illappear in

the illustration below. To summarize, the conditions when Equations (3.25)

and (3.26) are not gpod approximations are such that the ratio is likely to

be of questionable value owing to large variance.

If u and ware linear combinations of random variables, the theory

presented in previous sections applies to u and to w. Assumin~ u and w

are estimates from a sample, u take into theto estimate Var(-) accountw
sample design and substitute in Equation (3.26) estimates of u, W, 2 2

0u' o ,w

and p • Ignore Equation (3.25) unless there is reason to believe the bias
uw

of the ratio mi~ht be important relative to its standard error.

It is of interest to note the similairity between Var(u-w) and var<;).

According to Theorem 3.5,

Var(u-w) g 02 + 02 - 2pu w uw

JJ Hansen, Hurwitz, and Hadow, Sample Survey Methods and Theory,
Volume I, Chapter 4, John Wiley and Sons, 1953.



96

By definition the relative variance of ~n estimate is the variance of the

estimate divided by the s~uare of its expected value. Thus, in terms of 7

the relativ~ variance of a ratio, Equation (3.26) can be written

2 2a a
ReI Var(~) ••~ + ~ - 2p

w -2 -2 uw
u w

a au ,,,

uw

The similarity is an aid to remembering the formula for Var(u).
w

elements from a population of N. Let x and y be the sample means for

Illustration 3.13. Suppose one has a simple random sample of n ,.
r

characteris tics X and Y. Then. u - x. w ••• Y.

2
a
u

N-n.. --
N n

and 2a .••
w

N-n
N n

N-n
N

Notice that the condition discussed above,

sample is large enough so
2

Sy 2
---=2 < 0.1
nY

a
w

< 0.1. is satisfied if the
w

Substituting in Equation (3.26) we obtain the following as the variance of

the ratio:
x2 s~ si
-[-+---2 -2 -2Y X Y

2PXYSXSy
---]

XY

For this illustration it becomes
y

Equation (3.25).

The bias of ~ Xas an estimate of -
y

is given by the second term of

S2
Y[- --2y .

As the size of the sample increases. the bias decreases as l whereas the
n

standard error of the ratio decreases at a slower rate. namely 1

10



\
\

.'),,;,r •
'f ~, j
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Thus, we need not be concerned about a possibility of the bias becominr,

important relative to samplinr, error as the size of the sample increases.

A possible exception occurs when several ratios are combined. An example

is stratified random sampling when,many strata are involved and separate

ratio estimates are made for the strata. This is discussed in the books

on sampling.

3.9 CONDITIONAL EXPECTATION

The theory for conditional expectation and conditional variance of a

random variable is a very important part of sampling theory, especially

,II :: in the theory for multistage sampling. The theory will be discussed with

reference to two-stage sampling.
,

•..I.~ I ,_The notation that will be used in this and the next section is as

fQllows:

M is the number of psu's (primary sampling units) in the population.

m is the number of psu's in the sample.
thNi is the total number of elements in the i psu.

, "

~i,~~~~,,:'\

M
N ••~Ni is the total number of elements in the population.

i

thni is the sample number of elements from the i psu.

m
n - Eni is the total number of elements in the sample.

i

nn--m

Xij is the value of X for the jth element In the ith osu. It

refers to an element in the population, that is, j •• 1, ••• , Ni,

and i-I, •••, M.



••.••,••I :;"11
' "l. ~ "':r....

..,.' ~~.:....

"r·.~,r'-i~~.:

. ';Z',:",',,' "'1: ~',.~~
, , . ,~

98

Xij is the value of X for the jth element in the sample from the
thi psu in the samplet that iSt the indexes i and j refer to

the.set of psu's and elements in the sample.

Ni ~hX - L X is the populati~n total for thei psu.
i· j ij

Xi. thXi. - -- is the average of X for all elements in the i psu.Ni

MNi M
1:1: X

ij LXi.
X ij i is the average of all N elements.- - --.. N N

, I I r ~Ii , ' ! I , L

/
i

is Ithe ~verage of the psu totals.
'", ' , , "

difference between X •• and X.
Be sure to note the

, '

Xi_ - ~iXij ri~i~he~ampleltotal :for the ith psu in the sa~le.
j

Xi.:xi. = n
i

is the average for the ni elements in the sample from
ththe i psu.

" .~. "

X
n

is the average for all elements in the sample.

Assume simple random samplingt equal probability of selection without

replacementt at both stages. Consider the saMple of ni elements from the
ili -i psu. We know from Section 3.3 that xi' is an unbiased estimate of the

psu mean Xi. ; that iSt E(Xi.) = Xi. and for a fixed i (a specified psu)

ENixi• - NiE(Xi.) - NiXi• - Xi •• Butt owing to the first stage of samplinP,t
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ENixi must be treated as a random variable. Hence, it is necessary to

become involved with the expected value of an expected value.

First, consider X as a random variable, in the context of single-

equal anyone of .the values Xii in the

Let P(ij) be the probability of selecting

being equal to Xij• By definition

MNiE(X) = &E P(ij)Xijij

stage sampline, which could
M

population set of N = ENi •
i

th ththe j element in the i psu; that is, P(ij) is the probability of X

(3.27)

: " .:' l,',~ :1, r ,I ',I,~,i: f 11:1 ~ r,' q.l' '

Now consider the selection of an element as a two-step procedure:
•• I •~ ...,.

" 'M i !' l It' :, ~.,

(I) selected a psu with probability P(i), and (2) selected an element
i

within the selected psu ldth prob'ability pol i)~ In words, P(j Ii) is the
th thprobability of selecting the j element in the i p~u given that the

.th hId bId1 psu as a rea y een se ecte •

stitutio~,Equation (3.27) becomes

Thus, P(ij) •••,P(i)p(jli). By sub-

MN
E(X) = ~~ip(i)P(jli)Xij

" .
"., .:;'.... ,.

..
or E(X) (3.28)

By defini tion ,
N
i& P(j1i)Xij is the expected value of X for a fixed value

j

of 1. It is called"conditional expectation. II

N.
Let E2(Xli) = ~1p(jli)Xij where E2(xli) is the form of notation we

will be using to designate conditional expectation. To repeat, E2(xli)

means the expected value of X for a fixed i. The subscript 2 indicates
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that the conditional expectation applies to the second sta~e of sampling.

El and EZ will refer to expectation at the first and second stages,

respectively.

the expected value

In fact E2(xli)

is P(i). Thus the

Substituting Ez(Xli) in Equation (3.Z8) we obtain

M
E(X) = EP(i) E2(xli)

i

There is one value of Ez(Xli) for each of the M psu's.

is a random varigble where the probability of Ez(Xli)

right-hand side of Equation (3.Z9) is, by definition,

of Ez(Xli). This leads to the followin~ theorem:

Theo rem 3.6. E(X) - ElE2(xli)------
Suppose P (j Ii) 1 and P(i) I Then,-- - -Ni M· I

(3.Z9)

,I Ii j I

'i

and

In this case E(X) is an unweighted average of the psu averages. It is

.,:; important to note that,if P(i) and P(jli) are chosen in such a way that

P(ij) is constant, every element has the same chance of selection. This

point will be discussed later.

Theorem 3.3 dealt wi titthe expected value of a linear combination of

random variables. There is a corresponding theorem for conditional expecta-

tion. Assume the linear combination is

k

U - alul+···+~~ - t:latut
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where al""'~ are constants and ul"",uk are random variables. Let

E(Ulci) be the expected v~lue of U under a specified conditio~ ci' where

ci is one'of the conditions out of a set of M conditions that could occur.

The theorem on conditional expectation can then be stated symbolically as

follows:

Compare Theorems 3.7 and 3.3 and note that Theorem 3.7 is like

Theorem 3.3 except that conditional expectation is applied. Assume c is

a random event and that the probability of the event ci occurring is p(i1.

Then E(U/Ci) is a random variable and by definition the expected value of

M
E(ulci) is EP(i)E(ulci) which is E(U). Thus, we have the fo1lowin~

i
theorem:

Theorem 3.8. The expected value of U is the expected value of the

conditional expected value of U, which in symbols is written as follows:

(3.30)

Substituting the value of E(U/ci) from Theorem 3.7 in Equation (3.30)
we have

k
E(U) = E[alE(ullci)+ •••+akE(~lci)] = E[~atE(Utlci)]

Illustration 3.14. Assume two-stage sampling with simple random

sampling at both stages. Let X~t defined as follm~st be the estimator of

(3.31)

the population total:
lot m Nix~ • - rmini (3.32)
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Exercise 3.17. Examine the estimator, x', Equation (3.32). Express

: it ·in other forms that might help show its logical structure. For example,

N
i

n
i

•Jor al fixed i what is -- r x ? Does it seem like a reasonable way of-:ni j ij

esti~ating the populatio~ total?

To display x' as a linear combination of random variables it is

convenient to express it in the followin~ form:

M Nl M N1 II Nm H Nm
;x' III' [- - Xl +••. + - - x ] +•.• + [- -- xml +... + - --- x (3.33)

" ~\ ,,'~'•.-',, m n1. 1 m nl lnl m nm m nrn tnnm
i' .F. ~ •., ~ •• ' "' I~. i' I :

• I" ':' ~.i,', :":1'" -, '.
"'?*~~',w:e wan,t,::,.~o::,find .the expecte.4.,yalue of x' to determine whether it
i ~ • l' ,., ..

is ~qual to the population total. Accordin~ to Theorem 3.8,

"

, .
. ,";..", (3.34)

" •

~
.. ,.~.

, •• " :I •

, } ~ +~ -. -

\~.
-1

~•.~!.- l { • ~~

.-Eq'4at,1,ons(3.34) and (3.35) are obtained simply by substituting x' as
, 1,',

~. _ i""- t

tM .•..random variable in (3.30). The ci now refers to anyone of the m
'. ,

:pa~r~in the sample. First we must solve the conditional expectation,~ .... ,'. , N

:,",E2(~:f i). Since!! and -.!. are constant with respect to the conditional
" ' ,"" , .. m ni:', . " . ~..

. ,. , .. ,... ..
, ,ex~'o~a.Ci,on, and making use 0f Theorem 3. 7, we can ,,,rite

(3.35)

~ -, I

, '

..... .. ',:'.
.. . M m Ni ni

E2(x'li) ""- t -- t E2(xijli)
mini j

( 3 • 36)

r" 'I ....
, ,1- .

.- :'W~,~ fo.• an~ given psu in the sample that xij is an element in a

, si!llf>le' randcm saIlll'le from the psu and according to Section 3.3 its
'r, ,

<; .:e~ect.ed value is the psu mean, Xi•• That is,
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and

Substituting the result from Equation (3.37) in Equation (3.36) gives
m

E2(x~li) = ~ E N im i i i·
(3. 38)

Next we need to find the expected value of E2(x~li). In Equation

i:.+" .

-~ '." .

• #,"

':..~;..rj~··( .< 'II:

• # #, ••

t, ~~'" : '-'~~
"

"

, , ,random' ,- ,:..,'"
, •••• ri~

"<:.}, '
'"

, , ,

Mm. urn
E [ ~ X ] - ~ EE (X )1 m' i· rn 1 i·

i i

.• ',," ·11 v,~.i',.",

variable which gives in lieu of Equation (3.38).
M m

E2(x~li) -; ~ Xi.
, r. 'f, ; I ~

From Theorem 3.,3

Therefore,

Since

(3.38), Ni is a random variable, as well as Xi.' associated with the first':

stage of sampling. Accordingly, we will take Xi. - NiXi• as the

, .
')'

m
E [M 'EX ]
1 m i·i

estimator of the population total.

M
Therefore, E(x~) • E Xi' - X ••

i
This shows that x~ is an unbiased '", '

- I . ~ ..,.

<: ....
-... " •... \.

~' .. '

~..

~:,

3.10 CONDITIONAL VARIANCE

Conditional variance refers to the variance of a variable under a

specified condition or limitation. It is related to conditional prob-

ability and to conditional expectation.
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To find the variance of x" (See Equation (3.32) or (3.33» the followin~

important theorem will be used:

:rheor~~~~. The variance of x' is given by

where Vl is the variance for toe first stage of sampling and V2 is the

"conditional" variance for the second star,e.

We have discussed E2(x'li) and noted there is one value of E2(x'li)

for each psu in the population. Hence VlE2(x'li) is simply the variance

of the M values of E2(X'!i).

In Theorem 3.9 the conditional variance, V2(X'!i) ,

V2(x'li) = E2{[x'-E~(x'li)]2 Ii}

by definition is

I,'

To understand V2(x'li) think of x' as a linear combination of random

variables (see Equation (3.33». Consider the variance of x' when i is

held constant. All terms (random variables) in the linear cor.1bination
thare now constant except those originating from samp1in~ within the i

psu. Therefore, V2(x'li) is associated with variation amonR elements in

the ith psu. V2(x" i) is a random variable wi th M values in the set, one

;- for each psu. Therefore, ElV2(x'l i) by definition is

H
= EP(i)V2(x'!i)

i

That is, E1V2(x'li) is an average 9f ~ values of V2(X'\i) weip,hted by

P(i),the probability that the ith psu had of bein~ in the sacple.

Three illustrations of the application of Theorem 3.9 will be given.

In each case there will be five steps in findinp, the variance of x':

Step 1, find E2(x'li)

Step 2, find V1E2(X"i)
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Step 3, find v2(x"l i)

Step 4, find E1V2(x"ji)

Step 5, combine results from Steps 2·and 4.

Illust~~ti~~_!.15. This is a simple illustration, selected because

we know what the answer is from previous discussion and a linear cornbina-

tion of random variables is not involved. Suppose x" in Theorem 3.9 is

simply the random variable X where X.has an equal probability of being

anyone of the Xij values in the set of N

variance of X,can be expressed as follows:

He know that the .

.-' .

(3.39)

In the case of two-stage sampling an equivalent: method of selecting a

value of X is to select a psu first and then select an element within the

psu, the condition bein~ that P(ij) • P(i)p(jli) • ~. This condition is
Ni 1satisfied by letting P(i) - ~ and P(j/i) • ~. We now want to find

i

VeX) by using Theorem 3.9 and check the result with Equation (3.39).

Step 1. From the random selection specifications we know that

E2(X"'i) • Xi. Therefore,

Step 2. VlE2(x"\i) - V1(Xi.)
We know that

equal to the

NiXi. is a random variable that has a probability of ~ of being

ith value 1n the set Xl"." ~. Therefore, by definition

of the variance of a random variable,

where

(3.40)
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Step 3. By definition

Step 4. Since each value of V2(x'li) has a probability

M Ni Ni 1 - 2
= L N L N- (Xij-Xi.)i j i

(3.41)

Step 5. From,Equations (3.40) and (3.41) we obtain

The fact that Equations (3.42) and (3.39) are the same is verified

by Equation (1.10) in Chapter I.

(3.42)

Illustration 3.16. Find the variance of the estimator x' given by

Equation (3.3~) assuming simple random samp1inR at both stages of sampling.

Step 1. 'Theorem 3.7 is applicable. That is,

mIli _.'N •
E (x'i i) = H E [::.!; ..-!. x .1 if2 ij 2 m ni iJ

which means "sum the conditional expected values of each of the n terms

in Equation (3.33)."

With regard to anyone of the terms in Equation (3.33), the

conditional expectation is

E21: :: xijli] ~: :: E2(xijli)

Therefore

H= -m
N,

~ --xn.. i·
~

M X.~.:=---
m n.~

mn. u: X.•
= l:L~:~ ~.

., m n.
1J 1

(3.43)

With reference to Equation (3.43) and summinp with respect to j, we have
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Hence Equation (3.43) becomes

m
M- -

Step 2.

m
E Xi.
i

Find VIE2(x~li). This is simple

m
EX

i
ibecause --

t!\
in Equation

(3.44)

(3.44) is the mean of a random sample of m from the set of psu totals

Xl.' ••• ' ~. Therefore,

where

(3.45 )

M
E(Xi -X.) 2

2 i .
O'b,l -,. M and x.

In the subscript to 0'2, the "b" indicat,es between psu variance and "1"

distinguishes this variance from between psu variances in later illustra-

tions.

Step 3. Finding v2(x~li), is more involved because the conditional

variance of a linear combination of random variables must be derived.

However, this is analogous to using Theorem 3.5 for finding the variance

of a linear combination of random variables. Theorem 3.5 applies except

that V(uli) replaces V(u) and conditional variance and conditional co-

variance replace the variances and covariances in the formula for V(u).

As the solution proceeds, notice that the strategy is to shape the problem

so previous results can be used.

Look at the estimator x~, Equation (3.33), and determine whether any

covariances exist. An element selected from one psu is independent of an
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element selected from another; but within a psu the situation is the same

as the one we had when finding the variance of the mean of a simple random

sample. This suggests writing x~ in terms of xi. because the xi. 's are

independent. AccordinR1y. we will start with

Hence

Since the x 's are independent
i·

I ,~, ' I
• , ." ••• l~r ••• ,

4 •• ~

" ~ • -It , ,and since Ni is constant with regard to the"conditional variance

Since the sampling within each psu is simple random sampling

Ni-ni
2

V2(xi.li)-
ai

(N -1 ) nii

where

(3.46)

0.47)

Step 4. After substitutin~ the value of V2(xi.li) in Equation (3.40).
and then applying Theorem 3.3. we have

M2 Ni-ni
2,

E1V2(x~1i)
m 2 ai

-2 E El[Ni N -1 -]
m i i ni

Since the first staRe of saMplin~ was simple random sampling and each psu

had an equal chance of beinp, in the sample,
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(1) at the first
N
i- - and (2)N

Nt-nt 2
M Nt-nt 2

2 <1i 1 E N2 O't
El[Ni -]- -N -1 n1 M i i N -1 nii 1

Hence

M 2 Nt-ni
2

E v (x"'li)_ M O'i
E Ni N -112m i i

ni

Step 5. Combining Equation (3.48) and Equation (3.45)
2

M 2
2 M-m O'b1 M 2 Ni-ni O'iV (x"')- M -- --+- L N -M-1 m m i i Ni-l ni

I11ustr~~ion 3.17. ,The sampling specifications are:

stage select m psu's with replacement and probability P(i)

(3.48)

the answer is

(3.49)

\,

at the second stage a simple random sample of n elements is to be selected

froD. each of the m psu's selected at the first s~age.:"This will give a sam-

ple of n - mil elements. Find the variance of the sample estima,te of the

population total.

'The estimator needs to be changed because the p~u's are not selected

with equal probability. Sample values need to be weighted by the recip-

rocals of their probabilities of selection if the estimator is to be

unbiased. Let

P"'(ij) be the probability of element ij being in the sample,
thP"'(i) be the relative frequency of the i psu being in a sample

of m, and let

P"'(jli) equal the conditional probability of element ij being in
ththe sample given that the i psu is already in the sample.

Then

N
iAccording to the sampling specifications P"'(i) • m ~. This prob-

ability was described as relative frequency because "probability of being
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can appear in a sanple nare than once and it is counted every time it
'thappears. That is, if the i psu is selected more than once, a sanple of

- ~n is selected within the i psu every time that iltis selected. By

Equation (3.50) means that every element has an equal probability of being

in the sample. Consequently, the estiM<1tor is very simple,

substitution

P" (ij)
N -i n mn n= [m U1 i:" ...N •••N

~
(3.50)

N
x" --

mn
i(3.51)
I;

Exercise 3.18. Show that. x", Equation (3.51), is an unbiased estimator

of the population total.

In finding V(x") our first step was to solve for E2(X'"i).

Step 1. By definition

Since i is constant with rep,ard to E2'
.•. :, ~I

~.. -
mn

(3.52)

Proceeding from Equation (3.52) to the foll~~ing result is left as an

exercise:
N... -
m

(3.53)

Step 2. From Equation (3.53) we have
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Since the X 's are independenti·

Because the first stap,e of sampling is sanpling with probability propor-

tiona! to ~:i and \.rithreplac,ementt

Let

(3.54)

?. N- 2
- -- (Jm b2 (3.55)

II:

lit Exerc:.ise3.19,. "1Prove ,that E(Xi) •••X•• which sho\ls that it is

appropriate to use X.. in Equation (3.54).
Step 3. To find V2(x~li), first write the esti"~tor as

Nx~ = -
m

m
L Xi
i .

(3.56)

(~k~~:~'
~1:~:;';:

c .

Then, since the x 's are independent
i·

and

where
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Therefore

1'••••••• ," "'~,'~ I'" ~

• .0:>. '.:. ~. "'I.•• ~

";~1~~~~i~
.;.~~~,~.;. , ,'.:,J,f~

Step 4.
N2 1--2 -m n

Since the probability of V2(x'li)

which becomes

N2 M, Ni ,.Ni-n 2
E1V2(x"1i) -.-:: :I:,.:i- '.(N _l)oi

, mn i i

Step 5. i Coimbining' EqUationl 1.( 3.55 r and Equation (3.57) we have the

answer

(3.57)

(3.58)

.•.
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CHAPTER IV. THE DISTRIBUTION OF AN ESTIMATE

4.1 PRDPERnES OF SIMPLE RANDOM SAMPLES

The distribution of an estimate is a primary basis for judging the

accuracy of an estimate from a sample survey. But an estimate is only

one number. Howcan one numberhave a distribution? Actually, "distri-

bution of an estimate" is a phrase that refers to the distribution of

all possible estimates that might occur under repetition of a prescribed

sampling plan and estimator (method.of estimation). Thanks to theory

and empirical testing of the theory, .it is not necessary to generate

physically the distribution of ,an estimate by selecting numeroussamples
, ,

anet"making an estimate from each. However, to have a tangible dist.ribu-

tion of an estimate as a basis for discussion, an illustration has been

prepared.

Illustration 4.1. Consider simple randomsamples of 4 from an

NI 81assumedpopulation of 8 elements. There are nl (N-n)1 - 4T4T - 70 possible

samples. In Table 4.1, the sample values for all of the 70 possible sam-

pIes of four are shown. The 70 samples were first lis ted in an orderly

manner to facilitate getting all of them accurately recorded. The mean,

i, for each sample was computedand the samples were then arrayed

according to the value of x for purposes of presentation in Table 4.1.

The distribution of x is the 70 values of x shownin Table 4.1, including

the fact that each of the 70 values of x has an equal proDaDIlity or being

the estimate. These 70 values have been arranged.as a frequency distribu-

tion in Table 4.2.

As discussed previously, one of the properties of simple random

sampling is that the sample average is an unbiased estimate of the popu-

lation average; that is, E(x) - X. This means that the distrIbution of
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Table 4.l--Samples of four elements from a population of eight 1/

Sample
number

Values of
xi x

..------

2
8

.
S 1• Values of

amp e:
number: Xi.---

-x 2s

..----------

Ie
2
3
4
5

6
7
8
ges

10

lIs
12
13
14
15s

16
17
188
19s
20

21s
228
23s
248
25

268
278
28es
29
308

31s
328
338
34s
358

2,1,6,4
2,1,4,7
2,1,4,8
2,1,6,7
2,1,4,9

2,1,6,8
2,1,6,9
2,1,4,11
2,1,7,8
1,6,4,7

2,1.7,9 :
2,6,4,7
1,6,4,8
2,1,6,11
2,1,8,9

2,6,4,8
1,6,4,9
1,4,7,8
2,1,7,11
2,6,4,9

2,4,7,8
1,4,7,9
2,1,8,11
2,4,7,9
1,6,4,11

1,6,7,8
1,4,8,9
2,1,11,9
2,6,4,11
2,6,7,8

2,4,8,9
1,6,7,9
1,4,7,11
2,6,7,9
2,4,7,11

3.25
3.50
3.75
4.00
4.00

4.25
4.50
4.50
4.50
4.50

4.75 .
4.75
4.75
5.00
5.00

5.00
5.00
5.00
5.25
5.25

5.25
5.25
5.50
5.50
5.50

5.50
5.50
5.75
5.75
5.75

5.75
5.75
5.75
6.00
6.00

4.917
7.000
9.583
8.667

12.667

10.917
13.667
20.333
12.333

7.000

14.917
4.917
8.917 :

20.667 :
16.667

6.667
11.337
10.000 :
21. 583

8.917

7.583
12.250
23.000:

9.667
17.667

9.667
13.667
24.917
14.917

6.917

10.917
11.583
18.250

8.667
15.333

36s
378
38s
39s
40s

418
42
43es
44s
45s

46" I

478
48s
49s
50s

51
52s
538
54
55

568
57
58
59
60s

61
62es
63
64
65

66
67
68
69
70e

1,6,8,9
1,4,8,11
2,6,8,9
2,4,8,11
1,6,7,11

1,4,11,9
1,7,8,9
6,4,7,8
2,6,7,11
2,4,11,9

2,7,8,'91'
1,6,8,.11
6,4,7,9
2,6,8,11
1,6,11,9

1,7,8,11
6,4,8,9
2,6,11;9
2,7,8,11
1,7,11,9

6,4,7,11
4,7,8,9
2,7,11,9
1,8,11,9
6,4,8,11

2,8,11,9
6,4,11,9
6,7,8,9
4,7,8,11
4,7,11,9

6,7,8,11
4,8,11,9
6,.7,11,9
6,8,11,9
7,8,11,9

6.00
6.00
6.25
6.25
6.25

6.25
6.25
6.25
6.50
6.50

6.150
6.50
6.50
6.75
6.75

6.75
6.75
7.00
7.00
7.00

7.00
7.00
7.25
7.25
7.25

7.50
7.50
7.50
7.50
7.75

8.00
8.00
8.25
8.50
8.75

12.667
19.333

9.583
16.250
16.917

20.917
12.917 .

2.917
13.667
17.667

9.667
17.667

4.333
14.250
18.917

17.583
4.917

15.333
14.000
18.667

8.667
4 .667 ;

14.917
18.917

8.917

15.000
9.667
1.667
8.333
8.917

4.667
8.667
4.917
4.333
2.917

1..1
X -3

Values of X for
6, X4 - 4, X5 -
!(Xi-X/

N-1 = 12.

the population of eight e1e~nts are Xl = 2, X27, X6 - 8, X7 - 11, X8 = 9; X = 6.00; and
= 1,
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Table 4.2--Sampling distribution of x

Relative frequency of i

Simple random :Cluster sampling :Stratified randomsampling sampling:Illustration 4.1 .;Illustration 4.2 :Illustration 4.2
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3.25 1

, . '" 3.50 1
~.~:~~~t:,,~~~t~

~ 3.75 1~v:~~,' .... '\ .......
r>;" " 1,':I~!·/t ~*:~/l 4.00 2'~:~:>'·,.:(~ti~~~:

••• 4.25 1

4.50 4
4.75,

" "
3., .. ' ,'.•J ~t:l. i.

,) 5.00 5.,, 5.25 .... fi !~i"1'-' 1iI11" .. 4 .
5.50 5

5.75 6

6.00 .~ •• ,i ." 4
6.25 6

6.50 5

6.75 4
7.00 5

7.25 3,. ,
\.,?:~~~: 4- 7.50 4

\ : ~,';' '; " ~ 7.75 1

8.00 2

8.25 1

8.50 1

8.75 1

1

1

1

1

1

1

1

1

2

3

4
5

4

5

4

3

2

1

1

Total

Expected value
of i

Variance of x

70

6.00

1.50

6

6.00

3.29

36

6.00
0.49

--.--_0 0 _
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X is centered on X. If the theory is correct, the average of x for the

70 samples, which are equally likely to occur, should be equal to the
..

population average, 6.00. The average of the 70 samples does equal 6.00.

From the theory of expected values, we also know that the variance

of x is given by

• 1.5

2
S~ • N-n L
x N n

where

With reference do Illustration 4.1 and Table 4.1, S2 - 12.00 and S~ •
x

8-4 12-8-"4 - 1.5. The formula (4.1) can be verified by computing the

variance among the 70 values of i as follows:
. 2 ' 2 2(3.25-6.00) + (3.50-6.00) +••• + (8.75-6.00)

70
2Since S is a population parameter, it is usually unknown. Fortu-

nately, as discussed in Chapter 3, E(s2) - s2 where

(4.1)

2s •

n _ 2
t(xi-x)
i

n-l
I -,I 1" •• \

" 2In Table 4.1, the value of s is shown for each of the 70 samples. The

average of the 70 values of s2 is equal to s2. The fact that E(s2) _ S2

is another important property of simple random samples.

used as an estimate of S2. That is t

2 N-n s2
s- - -- -x N n

is an unbiased estimate of the variance of x.

2In practice s is

To recapitulate, we have just verified three important properties of

simple random samples:
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(1) E(x). X

(2) I¥-ns-· --x N
S

In

..
"

••

The standard error of x. namely S- • is a measure of how much i variesx

under repeated sampling from X. Incidentally. notice that Equation (4.1)

shows how the variance of i is related to the size of the sample. Now

we need to consider the form or shape of the distribution of x •

Definition 4.1. The distribution of an estimate is often called the

sampling distribution. It refers to the distribution of all possible
"I: 'values of an';estimate that· could occur under a prescribed sampling plan. ""I

..
4.2 SHAPE OF THE SAMPLING DISTRIBUTION

For random sampling there is a large volume of literature on the

distribution of an estimate which we will not attempt to review. In

practice. the distribution is generally accepted as being normal (See

f I"~

'" \'-<; "
,

.~,,

--
"

Figure 4.1) unless the sample size is "small. II The theory and empirical

tests show that the distribution of an estimate approaches the normal

distribution rapidly as the size of the sample increases. The closeness

of the distribution of an estimate to the normal distribution depends on:

(1) the distribution of X (i.e., the shape of the frequency distribution

of the values of X in the population being sampled). (2) the form of the

estimator. (3) the sample design. and (4) the sample size. It is not

possible to give a few simple. exact guidelines for deciding when the

degree of approximation is good enough. In practice. it is generally a

matter of working as though the distribution of an estimate is normal but

being mindful of the possibility that the distribution might differ
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E(x"')-2a ..•x E(x"')-a ..•x E(x"') ,'.E (x "')+0 ..•.,.: E (x "')+20 ..•...:' . x' . x

Figure 4.l--Distribution of an" estimate (normal distribution)

considerably from normal when the sample is very small and the population

distribution is highly skewed. 1/

It is very fortunate that the sampling distribution is approximately

normal as it gives a basis for probability statements about the precision

of an estimate. As notation,x'" will be the general expression for any

estimate,and 0 ...is the standard error of x ...•
x

Figure 4.1 is a graphical representation of the sampling distribution

of an estimate. It is the normal distribution. In the mathematical

equation for the normal distribution of a variable there are two parameters:

the average value of the variable, and the standard error of the variable.

1/ For a good discussion of the distribution of a sample estimate, see
Vol. I, Chapter l, Hansen, Hurwitz, and Madow. Sample Survey Methods and
Theory, John Wiley and Sons, 1953.

, "
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Suppose x~ is an estimate from a probability sample. The characteristics

of the sampling distribution of Xl are specified by three things: (1) the

expected value of Xl, E(xl

), which is the mean of the distribution; (2) the

standard error of x#, a I' and (3) the assumption that the distribution isx

normal. If x# is normally distributed, two-thirds of the values that Xl

99.7 percent of the estimates are within 3a I from E(x#).x

Exercise 4.1. With reference to Illustration 4.1, find E(x) - a- and------ x

E(x) + a-. Refer to Table 4.2 and find the proportion of the 70 valuest~ ,;,~:,.
X

•• •.

could equal are between [E(xl

) - a I] and [E(x#) + a 1],95 percent of thex x

possible values of Xl are between [E(xl
) - 2a I] and [E(xl

) + 2a I]' andx· x

.~" "

of x that are between E(x) - a- and E(x) + a-. How does this compare withx x
the expected proportion assuming the sampling distribution of x is normal?

The normal approximation is not expected to be close, owing to the small

size of the population and of the sample. Also compute E(x) - 20- andx

E(x) + 2a- and find the proportion of the 70 values of i that are betweenx

these two limi ts •

4.3 SAMPLE DESIGN

There are many methods of designing and selecting samples and of making

estimates from samples. Each sampling method and estimator has a sampling

distribution. Since the sampling distribution is assumed to be normal,
2alternative methods are compared in terms of E(xl

) and a I (or 0 I).x x
For simple random sampling, we have seen, for a sample of nJ that

every possible combination of ~ elements has an equal chance of being the

sample selected. Some of these pOSSible combinations (samples) are much

better than others. It is possible to introduce restrictions in sampling

so some of the combinations cannot occur or so some combinations have a
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higher probability of occurrence than others. This can be done without

introducing bias in the ext~mate x~ and without losing a basis for esti-

mating a ~•. Discussion of particular sample designs is not a primaryx

purpose of this chapter. Howevert a few simple illustrations will be

used to introduce the subject of design and to help develop concepts of

sampling variation.

Illustration 4.2. Suppose the population of 8 elements used in

Table 4.1 is arranged so it consists of four sampling units as follows:

Sampling Unit Elemen ts Values of X Sample Unit Total

1 lt2 Xl - 2t X - 1 32
2 3,4 X - 6t ,X4 - 4 103
3 5,6 X - 7, X - 8 155 6
4 7,S X7 - llt Xs - 9 20

For sampling purposes the population now consists of four sampling

units rather than eight elements. If we select a simple random sample of

two sampling units from the population of four sampling units, it is clear

that the sampling theory for simple random sampling applies. This illus-

tration points out the importance of making a clear distinction between a

sampling unit and an element that a measurement pertains to. A sampling

unit corresponds to a random selection and it is the variation among sam-

pling units (random selections) that determines the sampling error of an

estimate. When the sampling units are composed of more than one element t

the sampling is commonly referred to as cluster sampling because the ele-

ments in a sampling unit are usually close together geographically.
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For a simple randomsample of 2 sampling units, the variance of x ,
c-where x is the sample average per sampling unit, isc

where

S~
xc

. S2N-n c-- -.N n 13.17

S2 • (3-12)2 + (10-12)2 + (15-12)2 + (20-12)2 158N - 4, n • 2,. and ..•------------------------- .•..-- -'-3c 3

Instead of the average per sampling unit one will probably be interested
-x- cin the average per element, which is x • 2 ' since there are two elements

in each sampling unit. The variance of i is one-fourth of the variance

of xc. Hence, the variance of i is 13417 - 3.29.

There are only six possible, randomsamples as follows:

Sampleaverage per
2Samplew Sampling Units. I sampling unit, i s, c c-

1 1,2 6.5 24.5

2 1,3 9.0 72.0

3 1,4 11.5 144.5

4 2,3 12.5 12.5

5 2,4 15.0 50.0

6 3,4 17.5 12.5

where s2 •
c and Xi is a sampling unit total. Be sure to notice

that s2 (which is the sainple estimate of S2) is the variance amongsamplingc c

units in the sample, not--the variance amongindividual elements in the

sample. Fromthe list of six samples, it is easy to verify that i is an
c

2unbiased estimate of the population average per sampling unit and that Sc

is an unbiased estimate of 158 , the variance amongthe four sampling3
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units in the population. Also. the variance amonR the six values of x is

13.17 which agrees with th~ formula.

The six possible cluster samples are among the 70 samples listed in

Table 4.1. Their sample numbers in Table 4.1 are 1. ~. 28. 43. 62. and

70. A "c" follows these sample numbers. The sampling distribution for

the six samples is shown in Table 4.2 for comparison with simple random

sampling. 'It is clear fron inspection that random selection from these

six is less desirable ,than random selection from the 70. For ex,amp1e.

one of the two extreme averages. 3.25 or 8.75. has a
, "

u!occurring for the cluster samp~ing and a probability
'II"
'I ~ I ~ ,

1probability of 3 of
1of only 35 when

selecting a simple random sample of four elements. In this illustration.

the sampling restriction (clusterinR" of elements) increaSed the sampling'

variance from 1.5 to 3.29.

It is of importance to note that the average variance among elements

within the four clusters is only 1.25. (Students should compute the within

cluster variances and verify 1.25). This is much less than 12.0~ the

variance among the 8 elements of the population. In ~ality. the variance

among elements within clusters is usually less than the variance among all

elements in the population. because clusters (sampling units) are usually

composed of elements that are close together and elements that are close

together usually show a tendency to be alike.

Exercise 4.2. In Illustration 4.2. if the average variance among

elements within clusters had been greater than l2.0~ the sampling variance

for cluster sampling would have been less than the sampling variance for a

simple random sample of elements. Repeat what was done in Illustration 4.2
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using as sampling units elements 1 and 6, 2 and 5, 3 and 8, and 4 and 7.

Study the results.

Illus~ation 4.3. Perhaps the most common method of sampling is to

assign sampling units of a population to groups called strata. A simple

random sample is then selected from each stratum. Suppose the population

used in Illustration 4.1 is divided into two strata as follows:

Stratum 1

Stratum 2
Xl c 2" X2 = 1, X3 • 6, X4 = 4

Xs • 7, X6 = 8, X7 = 11, X8 • 9
, "j.: <'

The sampling plan is to select a simple random sample of two elements
! •

from each stratum. There are 36 possible s~1es of 4, two from each "'
••. I

stratum. These 36 samples are identified in Table 4.1 by an s after the

sample number so you may compare the 36 possible stratified random samples;,
II(j· j

with the 70 simple random samples and with the six cluster samples. Also,
; ",

see Table 4.2.

Consider the variance of x. We can write

x =

",-"

~
'.

~.
I..

where Xl is the sample average for stratum I and x2 is the average for

stratum 2. According to Theorem 3.5

S~ = (!.)(S~ + S~ + 2S- - )
x 4 Xl x2 xlx2

We knm~ the covariance, S- - , is zero because the sampling from onexlx2
stratum is independent of the sampling from the other stratum. And,

since the sample within each stratum is a simple random sample,

52
Nl - 2

2 :~Cnl 52
E (Xli-Xl.)

1 is- = whe re =Xl Nl nl 1 N -11
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The subscript "1" refers to stratum 1. s~ is of the same form as 5~ •
x2 Xl

Therefore ,
52 52

S~ I Nl-nl N2-n21 -1.]- - [ N +
X 4 nl ·N n2I 2

Since

The variance, 0.49, is comparable to 1.5 in Illustration 4.1 and to 3.29 in

I- '2' and nl - n2 - 2,

- 0.49

N2-n2
N2

52+52
[I 2]. 1[4.92+2.~2]

782

-
5~ • 1
x 8

Illustration 4.2.

In Illustration 4.2, the sampling units were groups of two elements and

the variance among these ~roups (sampling units) appeared in the formula

for the variance of x. In Illustration 4.3, each element was a.samp1ing
, • ·,1'

unit but the selection process (randomization) was restricted to taking

one stratum (subset) at a time,so the sampling variance was determined by

variability within strata. As you study sampling p1ans,form mental pictures

of the variation which the sampling error depends on. With experience and
\accumulated knowledge of what the patterns of variation in various popula-

,:1:',,0<.~.'~ tions are like, one can become expert in judging the efficiency of a1terna-

tive sampling plans in relation to specific objectives of a survey.
l

If the population ~d the samples in the above illustrations had been

larger, the distributions in Table 4.2 would have been approxinate1y nor-

mal. Thus, since the form of the distribution of an estimate from a prob-

ability sample survey is accepted as being normal, only two attributes of

an estimate need to be evaluated, namely its expected value and its

variance.
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In the above illustrations ideal conditions were implicitly assumed.

Such conditions do not exist in the real world so the theory must be

extended to fit, 'moreexactly, actual conditions. There are numerous

sources of error or variation to be evaluated. The nature of the rela-

tionship between theory and practice is a major governing factor deter-

mining the rate of progress toward improvementof the accuracy of survey

resul ts.

Wewill nowextend error concepts toward morepractical settings.

4.4 RES·PONSE ERROR

So far,' we have discussed sampling under implicit assumptions that

measurements'are obtained from all n elements in a sample and that the

measurementfor each element is without error. Neither ass:umptionfits,

exactly I, the'real world. In addition, there are "coverage" errors of

various kindS. For example, for a farm survey a farm is defined but

application of the definition involves somedegree of ambiguity about

whether particular enterprises satisfy the definition. Also, two persons

might have an interest in the samefarm tract giving rise to the possibility

1... '

that the tract might be counted twice (included as a part of two farms) or

omitted entirely.

Partly to emphasizethat error in an estimate is more than a matter

of sampling, statisticians often classify the numeroussources of error

into one of two general classes: (1) Samplingerrors which are errors

associated with the fact that one has measurementsfor a s,ampleof elements

rather than measurementsfor all elements in the population, and (2) non-

sampling errors--errors that occur whether sampling is involved or not.

Mathematical error models can be very complexwhenthey include a term for
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each of many sources of error and atte1l1pt to represent exactly the real

world. However, complicated error models are not always necessary,

depending upon the purposes.

For purposes of discussion, two oversimplified response-error models

will be used. This will introduce the subject of responBt: error and give

some clues regarding the nature of the impact of response error on the

distribution of an estimate. For simplicity, we will assume that a

measurement is obtained for each element in a random sample and that no

ambiguity exists regarding the identity or definition of an element. Thus,

we will be considering sampling error and re:sponse error simultaneously.

Illustration 4.4. Let T1, ••• ,T
N

be the "true values" of some variable

for the N elements of a population •. The mention of true values raises

numerous questions about what is a true value. For example, what is your :::11

true weight? Howwould you define the true weight of an individual? We '·1 •. •·

will refrain from discussing the problem of defining true values and simply '-

assume that true values do exist according to some practical definition.

Whenan attempt is made to ascertain Ti, some value other than Ti might

be obtained. Call the actual value obtained Xi' The difference, ei •

thXi - Ti, is the respon.se error for the i element. If the characteristic,

for example, is a person's weight, the observed weight, Xi' for the i th

individual depends upon when and how the measurement is taken. However,

for simplicity, as~ume that Xi is always the value obtained regardless of

the cortditions under which the measurement is taken'. In other words,

thassume that the response error, ei, is constant for the i element. In

this hypothetical case, we are actually sampling a population set of values

Xl"",XN instead of a set of true values T1, ••• ,TN•
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Under the conditions as stated, the sampling theory applies exactly

to the set of population values Xl"" ,~. If a simple random sample of

elements is selected and measurements for all elements in the sample are

obtained, then E(x) - X. That is, if the purpose is to estimate if

N
tTi
i---N

".',,:
, ,

,~ :,~-~: ~I •••

the estimate is biased unless if happens to' be equal to X. The bias is

X - T which is appropriately called IIresponse bias. II

" ,

Then, the mean of a sblple :!random"sample;maybe 'expressed as

or, as

n
tX

iX·--n
x-t+e

" i. '

, ,

'I' " ;._ I" I

From the theory of expected values, we have

E(x) - E(t) + E(e)
Since E(x) - X and E(t) - T it follows that

X - if + E(e)

Thus, x is a biased estimate of T unless E(e)- 0, where E(e)
N
tei---N

i.. ~- That is, E(e). is the average of the response errors, ei, for the whole

population.

For simple random sampling the variance of x is

S2
s_2 __N-n X

wherex N n

N
t(X

i
-X)2

s2 __i _

X N-l

Howdoes the response error affect the variance of X and of x? Wehave

thalready written the observed value for the i element as being equal to
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its true value plus a response error, that is, Xi • Ti + ei• Assuming

random sampling, Ti and ei are random variables. We can use Theorem 3.5

from Chapter· III and write

(4 •.3)

222where Sx is the variance of X, ST is the variance of T, Se is the response

variance (that is, the variance of e), and ST is the covariance of T and. ,e

e. The terms on the right-hand side of Equat~on (4.3) cannot be evaluated

unless data on Xi and T1 are' available; however, the equation does show how

the response error influences the variance of X and hence of i,.

As a numerical example, assume. a population of five elements and the

following values for T and X:

T1 ~
ei

23 26 3

13 12 -1

17 23 6

25 25 0

7 9 2,.
~~'~II'

.
'j"'

Average 17 19 2

Students may wish to verify the following results, especially the variance

of e and the covariance of T and e:

~" ~I ,I

2Sx • 62.5 S~ - 54.0 2S - 7.5e S • 0.5T,e
As a verification of Equation (4.3) we have

62.5 - 54.0 + 7.5 + (2)(0.5)



Fromdata in

129

n _ 2
L(xi-x)

a simple randomsample one would computes~ • _i _x n-l

"

2
and use N;n :x as an estimate of the variance of x. Is it clear that

2 2 2Sx is an unbiased estimate of Sx rather than of ST and that the impact of

variation in ei is included in s; ?

To summarize, response error cavsed a bias in x as an estimate of T
, '.' --that was 'equal to X - T. In addition, it was a source of variation included

'in the'standard error of x. To evaluate bias and variance attributable to

response error, information on Xi and Ti must be available.

Illustration 4~5. In this' case, we assumethat the response error

where

for a given element is not constant. That is, if an element were measured

thon several occasions, the observed values for the i element could vary

even though the true value, Ti' remained unchanged. Let the error model be

Xij • Ti + eij

Xij is the observed value of X for the i th element whenthe

and

observation is taken on a particular occasion, j,

Ti is the true value of X for the ith element,

eij is the response error for the ith element on a particular

occasion, j.

Assume,for any given element, that the response error, eij, is a random

variable. Wecan let e1j • ei + eij, where ei is the average value of eij

for a fixed i, that is, ei - E(eijli). This divides the response error

for the i th element into two components: a constant component,ei, and a

variable component,eij• By definition, the expected value of eij is zero

for any given element. That is, E(eijli) • O.
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Substituting ei + eij for e~j' the model becomes

(4.4)

..

:~

The model, Equation (4.4), is now in a good form for comparison with

the model in Illustration 4.4. In Equation (4.4), ei, like ei in

Equation (4.2) is constant for a given element. Thus, the two models

are alike except for the added term, eij, in Equation (4.4) which allows
thfor the possibility tbat the response error for the i element might not

be constant.
" I I;': 1'1

Assume a simple random sample of n elements and one observation for
, , I II

each element. According to the model, Equation (4.4), we may now wri te
1', I 1 '.

the sample mean as follows:
·'_1,1, .,.

tti te ~eiji' i i . '.x -- + +n n n
I ,

Summation with respect to j is not needed as there is only one observation

for each element in the sample. Under the conditions specified the expected

value of x may be expressed as follows:

E(x) - T + e

where

N
tT

i
i

T --- N
-ande

N
te

i
i---N

The variance of x is complicated unless some further assumptions are

made. Assume that all covariance terms are zero. Also, assume that the

conditional variance of eij is constant for all values of i; that is, let

v(eijli) - 5;. Then, the variance of x is

52 S~ s2
s~ _ N-n ....!. + N-n .-!. + .....!.
x N n N n n



where 2S- -e

N - - 2E (ei-e)
i

N-1
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and s; is the conditional variance of eij, that is, V(eij1i). For this

model the variance of x does not diminish to zero as n~N. However, assuming

S2
eN is large, the variance of x, which becomes N ,is probably negligible.

Definition 4.2. Mean-Square Error. In terms of the theory of expected

values the mean-square error of an estimate, x"", is E(x""-T)2 where T is the

target value, that is, the value, being estimated. From the theory it is

easy to show that
r, '~"j" I 2 .1 ,'1 4i' ," •. ,I 2'
- [E(x~)-Tj "+ E[x"'-E(x"')l'

, .
, 'Thus, the mean-square error, mse, can be expressed as follows:

where B - E(x"") - T

I ~:

(4.5)

(4.6)

and 2
C1 '"x - E,[x""-E(x",)]2 (4.7)

'. "

Definition 4.3. Bias. In Equation (4.5), B is the bias in x"" as

an estimate of T.

. ~"i. ,

Definition 4.4. Precision. The precision of an estimate is the

~ standard error of the estimate, namely, C1 "" in Equation (4.7).
x

Precision is a measure of repeatability. Conceptually, it is a

measure of the dispersion of estimates that would be generated by repetition

of the same sampling and estimation procedures many times under the same

conditions. With reference to the sampling distribution, it is a measure

of the dispersion of the estimates from the center of the distribution and
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does not include any indication of where the center of the distribution

is in relation to a target.

In Illustrations 4.1, 4.2, and 4.3, the target value was implicitly

assumedto l,>eX; that is, T was equal to X. Therefore, B was zero and

the mean-square error of x'" was the same as the variance of x...• In

Illustrations 4.4 and 4.5 the picture was broadened somewhatby intra-

ducing respon.se error and examining, theoretically, the impact of response

error on E(x"') and a .•• In practice manyfactors have potential forx

influencing the sampling distribution of x...• That is, the data in a

sample are subject to error that might be attributed to several sources.

Fromsample data an estimate, x", is computedand an estimate of the

variance of x" is also computed. Howdoes one interpret the results? In

Illustrations 4.4 and 4.5 we found that response error could be divided

into bias and variance. The error from any source can, at least concep-

tually, be divided into bias and variance. Anestimate from a sample is

subject to the combinedinfluence of bias and variance corresponding to

each of the several sources of error. 'Whenan estimate of the variance

of x'" is computedfrom sample data, the estimate is a comination of

variances that might be identified with various sources. Likewise the

difference between E(x") and T is a combination of biases that might be

identified with various sources.

Figure 4.2 illustrates the sampling distribution of x'" for four

different cases: A, no bias and low standard error,; B, no bias and larg,e

standard error; C, large bias and low standard error; and D, large bias

and large standard error. The accuracy of an estimator is sometimesdefined

as the square root of the mean-squareerror of the estimator. According
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E(x")
1 I

T

I
T

E(x'")

B: No bias--large standard error·

I
T

..1 "

T
E(x"}

A: No bias--low standard error

"I' ",

!
••.. ':',

c: Large bias--low standard error D: Large bias-large standard error

Figure 4.2--Examples of four sampling distributions

T-- -"
". E(x")

Figure 4.3--Sampling distribution--
Each small dot corresponds to an estimate
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to that definition, we could describe estimators having the four sampling

distributions in Figure 4.2 as follows: In case A the estimator is precise

and accurate; in B the estimator lacks precision and is therefore inaccurate;

in C the estimator is precise but inaccurate because of bias, and in D-ehe

estimator is inaccurate because of bias and low precision.

Unfortunately, it is generally not possible to determine, exactly,

the magnitude of bias in an estimate, or of a particular component of bias.

However, evidence of the magnitude of bi~s is often available from general

experience, from knowledge of how well the survey processes were performed,

and from special investigations. The author accepts a point of view that

the mean-sq';lare error is an appropriate concept of accuracy to follow. In

that context, the concern becomes a matter 0 f the magnitude 0f the mse and

the ,size of B re1at:ive to ax" •. ::.:rhat,..viewpoint is important because it is

not possible to bel certain that B is zero. Our goal should be to prepare

survey specifications and to conduct survey operations so B is small in

relation to a .•• Or, one might say we want the mse to be minimumfor ax

given cost of doing the survey. Ways of getting evidence on the magnitude

of bias is a major subject and is outside the scope of this publication.

As indicated in the previous paragraph, it is important to know some-

thing about the magnitude of the bias, B, relative to the standard error,

ax". The standard error is controlled primarily by the design of a sample

and its size. For many survey populations, as the size of the sample

increases, the standard error becomes small relative to the bias. In fact,

the bias might be larger than the standard error even for samples of

moderate size, for example a few hundred cases, depending upon the circ~

stances. The point is that if the mean-square error is to be small, both
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Band c ~ must be small. The approaches for reducing B are very differentx
from the approaches for reducing c ..•• The greater concern about non-x

sampling'error is bias rather than impact on variance. In the design and

selection of samples and in the processes of doing the survey an effort is

made to prevent biases that are IIsamplingll in origin. However, in survey

work one must be constantly aware of potential biases and on the alert to

minimize biases as well as random error (that is, c ...).x
The above discussion puts a census in the same light as a sample.

Results from both have a mean-square error. Both are surveys with refer-

ence to use olf results; Uncertain inferences are involved in the use of

results from a census as well as 'from--a sample. The only difference is

that in' a census' one attempts to get a measurement for all N elements,
I '" .~" ~lo t ,

but making n • N'does no't reduce the mse to zero. Indeed, as the sample
" '

size increas'es', 'there is no positive assurance that the mse will always

decrease; because, as the variance component of the mse decreases, the

bias component might increase. This can occur especially when the popu-

lation is large and items on the questionnaire are such that simple,

accurate answers are difficult to obtain. For a large sample o,r a census,

compared to a small sample, it might be roore difficult to control factors

that cause bias. Thus, it is possible for a census to be less accurate

(have a larger mse) than a sample wherein the sources of error are more

adequately controlled. Muchdepends upon the kind of information being

collected.

4.5 BIAS AND STANDARD ERROR

The words IIbias," "biased, II and "unbiasedll have a wide variety of

meaning amongvarious individuals. As a result, much confusion exists,
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espec~ally since the terms are often used loosely. Technically, it seems

logical to define the bias in an estimate as being equal to B in Equation

(4.6), which is the difference between the expected value of an estimate

and the target value. But, except for hypothetical cases, numerical values

do not exist for either E(x') or the target T. Hence, defining an unbiased

estimate as one where B - E(x') - T - 0 is of little, if any, practical

value unless on&is willing to accept the target as being equal to E(x').

From a saDipling point of view there are conditions that give a rational

basis for accepting E(x') as the target. However, regardless of how the
, ,I' 'I .

target is defined, a good practical interpretation of E(x') is needed.
, I, '

It has become commonpractice among-surv~y statisticians to -call an

estimate unbiased when it is based on methods of sampling and estimation
f' ' 'II. "

that are "unbiased." For example, in Illustration 4.4, x would be referred
: ; ~'I ~ : i 1,

to as an unbiased estimate--unbiased because the method of slampling and

estimation was unbiased. In other words, since x was an unbiased estimate

of i, i could be interpreted as an unbiased estimate of the result that

would have been obtained if all elements in the population had been

measured.

In Illustration 4.5 the expected value of x is more difficult to

describe. Nevertheless, with reference to the method of sampling and

estimation, i was "unbiased" and could be called an unbiased estimate

even though E(x) is not equal to T.
The point 1s that a simple statement which says, "the estimate is

unbiased" is incomplete and can be very misleading, especially if one is

not familiar with the context and concepts of bias. Calling an estimate

unbiased is equivalent to saying the estimate is an unbiased estimate of

~ ., "

•,
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its expected value. Regardless of how"bias" is defined or used, E(x"')

is the meanof the sampli~g distribution of X; and this concept of E(x')

is very important because E(x') appears in the standard error, a ..•, of x'"x

as well as in B. See Equations (4.6) and (4.7).

As a simple concept or picture of the error of an estimate from a

survey, the writer likes the analogy between an estimate and a shot at

a target with a gun or an arrow. Think of a survey being replicated

manytimes using the samesampling plan, but a different sample for each

replication. Each replication would provide an estimate that corresponds

to a shot at a target.
'I lC

In Figure 4.3, each dot corresponds to an estimate from one of the
, '

replicated samples. The center of the cluster of dots is labeled E(x')

because' it corresponds to the expected value of an estimate. Aroundthe

point lex') a circle is drawnwhich contains two-thirds of the points.

The radius of this circle corresponds to a ..•, the standard error of thex
estimate. The outer circle has a radius of two standard errors and con-

tains 9S percent of the points. The target is labeled T. The distance
. '

between T and Eex"') is bias, which in the figure is greater than the

standard error •

In practice, we usually have only one estimate, x"', and an estimate,

s ..•, of the standard error of x..•• With reference to Figure 4.3, thisx

1II88lU1 one point and an estimate of the radius of the circle around E(x"')

that would contain two-thirds of the estimates in repeated samplings. We

do not knowthe value of E(x"'); that is, we do not knowwhere the center

of the circles is. However,whenwe makea statement about the standard

error of x"', we are expressing a degree of confidence about howclose a

1.1
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particular estimate prepared from a survey is to E(x'); that is, how

close one of the points in Figure 4.3 probably is to the unknown point

E(x'). A judgment as to how far E(x') is from T is a matter of how T

is defined and assessment of the magnitude of biases associated with

various sources of error.

Unfortunately, it is not easy to make a short, rigorous, and complete

interpretative statement about the standard error of x'. If the estimated

standard error of x' is three percent, one could simply state that fact

and not make an interpretation. It does not help much to say, for example,

that the odds are about two out of three that the estimate is within three

percent of its expected value, because a person familiar with the concepts

already understands that and it probably does not help the person who is
.l

unfamiliar with the concepts. Suppose one states, "the standard error of

x' means the odds are two out of three that the estimate is within three

percent of the value that would have been obtained from a census taken

under identically the same conditions." That is a good type of statement

to make but, when one engages in considerations of the finer points,

interpretation of "a census taken under identically the same conditions"

is needed--especially since it is not possible to take a census under

identically the same conditions.

In summary, think of a survey as a fully defined system or process

including all details that could affect an estimate, including: the method

of sampling; the method of estimation; the wording ,of questions; the order

of the questions on the questionnaire; interviewing procedures; selection,

training, and supervision of interviewers; and editing and processing of

•\
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data. Conceptually, the sampling is then replicated many times, holding

all specifications and conditions constant. This would generate a sam-

pIing dis~ribution as illUstrated in Figures 4.2 or 4.3. Weneed to

recognize that a change in any-of the survey specifications or conditions,

regardless of how trivial the change might seem, has a potential for

changi.ng the sampling distribution, especially the expected value of .•x •

,- ,

r It'",I"r~I

Changes in survey plans, even though the definition of the parameters

being estimated remains unchanged, often result in discrepancies that

are larger than the random error that can be attributed to sampling.

The points discussed in the latter part of this chapter were included

to emphasize that muchmore than. a well designed sample is required to

assure accurate results. Goodsurvey planning and managementcalls for
-"f1~1'!' I •

'.'1, I' . '. evaluation of errors from all sources and for trying to balance the effort

to control error from various sources so the mean-square error will be

within acceptable limits as economically as possible.
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